Ultrafine particulate matter exposure augments ischemia-reperfusion injury in mice.
نویسندگان
چکیده
Epidemiological studies have linked ambient particulate matter (PM) levels to an increased incidence of adverse cardiovascular events. Yet little is definitively known about the mechanisms accounting for the cardiovascular events associated with PM exposure. The goal of this study was to determine the effects of ultrafine (<0.1 microm) PM exposure on ischemia-reperfusion (I/R) injury. ICR mice were exposed to 100 microg of PM or vehicle by intratracheal instillation. Twenty-four hours later, mice were anesthetized with pentobarbital sodium (60 mg/kg), the left anterior descending coronary artery was ligated for 20 min, flow was restored for 2 h, and the resulting myocardial infarct (MI) size was evaluated. PM exposure doubled the relative size of the MI compared with the vehicle control. No difference was observed in the percentage of the left ventricle at risk for ischemia. PM exposure increased the level of oxidative stress in the myocardium after I/R. The density of neutrophils in the reperfused myocardium was increased by PM exposure, but differences in the number of blood leukocytes, expression of adhesion molecules on circulating neutrophils, and activation state of circulating neutrophils 24 h after PM exposure could not be correlated to the increased I/R injury observed. Additionally, aortas isolated from PM-exposed animals and studied in vitro exhibited a reduced endothelium-dependent relaxation response to acetylcholine. These results indicate that exposure to ultrafine PM increases oxidative stress in the myocardium, alters vascular reactivity, and augments injury after I/R in a murine model.
منابع مشابه
Comparative Toxicity of Size-Fractionated Airborne Particulate Matter Collected at Different Distances from an Urban Highway
BACKGROUND Epidemiologic studies have reported an association between proximity to highway traffic and increased cardiopulmonary illnesses. OBJECTIVES We investigated the effect of size-fractionated particulate matter (PM), obtained at different distances from a highway, on acute cardiopulmonary toxicity in mice. METHODS We collected PM for 2 weeks in July-August 2006 using a three-stage (u...
متن کاملTiliacora triandra (Colebr.) Diels leaf extract enhances spatial learning and learning flexibility, and prevents dentate gyrus neuronal damage induced by cerebral ischemia/reperfusion injury in mice
Objective: The present study investigated the effects of a local Thai vegetable, Tiliacora triandra (Colebr.) Diels, also known as Yanang, against cerebral ischemia/reperfusion injury in mice. Materials and Methods: Thirty male ICR mice were divided into three experimental groups of BLCCAO + 10% Tween 80, BLCCAO + T. triandra 300 mg/kg, and BLCCAO + T. triandra 600 mg/kg. Cerebral ischemia/repe...
متن کاملThe cardioprotective effect of vanillic acid on hemodynamic parameters, malondialdehyde, and infarct size in ischemia-reperfusion isolated rat heart exposed to PM10
Objective(s): Particulate matter (PM) exposure can promote cardiac ischemia and myocardial damage. The effects of PM10 on hemodynamic parameters, lipid peroxidation, and infarct size induced by ischemia-reperfusion injury and the protective effects of vanillic acid (VA) in isolated rat heart were investigated. Materials and Methods: Eighty male Wistar rats (250–300 g) were divided into 8 groups...
متن کاملEffect of ambient particulate matter exposure on hemostasis.
Epidemiological studies have linked levels of particulate matter (PM) in ambient air to cardiovascular mortality and hospitalizations for myocardial infarction (MI) and stroke. Thrombus formation plays a primary role in potentiating acute cardiovascular events, and this study was undertaken to determine whether pulmonary exposure to PM alters hemostasis. PM was collected from the Chapel Hill, N...
متن کاملStroke Damage Is Exacerbated by Nano-Size Particulate Matter in a Mouse Model.
This study examines the effects of nano-size particulate matter (nPM) exposure in the setting of murine reperfused stroke. Particulate matter is a potent source of inflammation and oxidative stress. These processes are known to influence stroke progression through recruitment of marginally viable penumbral tissue into the ischemic core. nPM was collected in an urban area in central Los Angeles,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 291 2 شماره
صفحات -
تاریخ انتشار 2006